DAVID G. SIMPSON |
||||||||||||||||||||||||
|
LAGRANGE'S TRIGONOMETRIC IDENTITIESIn trigonometry, Lagrange's trigonometric identities, named after Joseph Louis Lagrange, are:[1][2]DerivationLagrange's trigonometric identities may be derived by starting with the complex sumSetting z=eiθ and equating the imaginary parts of both sides gives the first identity; equating the real parts of both sides gives the second. References[1]Eddie Ortiz Muñiz. “A Method for Deriving Various Formulas in Electrostatics and Electromagnetism Using Lagrange's Trigonometric Identities”. American Journal of Physics 21 (2): 140 (February 1953).[2]Alan Jeffrey and Hui-hui Dai. Handbook of Mathematical Formulas and Integrals (4th ed.), Section 2.4.1.6. Academic Press (2008). ISBN 9780123742889. Contact InformationI may be contacted at: |
Copyright © 2006 David G. Simpson
http://www.DavidGSimpson.com